第391章到達

第391章到達

在形成幾百萬到幾千億年之後,恆星會消耗完核心中的氫。大質量的恆星會比小質量的恆星更快消耗完核心的氫。在消耗完核心中的氫之後,核心部分的核反應會停止,而留下一個氦核。

失去了抵抗重力的核反應能量之後,恆星的外殼開始引力坍縮。核心的溫度和壓力像恆星形成過程中一樣升高,但是是在一個更高的層次上。一旦核心的溫度達到了1億開氏度,核心就開始進行氦聚變,重新通過核聚變產生能量來抵抗引力。恆星質量不足以產生氦聚變的會釋放熱能,逐漸冷卻,成為白矮星。

積熱的核心會造成恆星大幅膨脹,達到在其主星序階段的數百倍大小,成為紅巨星。紅巨星階段會持續數百萬年,但是大部分紅巨星都是變星,不如主序星穩定。

而到了晚年,不同的類型的恆星,卻是有著不同的死法。

低質量恆星的演化終點沒有直接觀察到。宇宙的年齡被認為是一百多億年,不足以使得這些恆星耗盡核心的氫。當前的理論都是基於計算機模型。一些恆星會在核心進行氦聚變,產生一個不穩定和不平衡的反應,以及強烈的太陽風。在這種情況下,恆星不會爆發產生行星狀星雲,而只會耗盡燃料產生紅矮星。

但是小於0.5倍太陽質量的恆星甚至在氫耗盡之後都不會在核心產生氦反應。像比鄰星這樣的紅矮星的壽命長達數千億年,在核心的反應終止之後,紅矮星在電磁波的紅外線和微**段逐漸暗淡下去。

中等質量恆星,達到紅巨星階段時,0.4到3.4太陽質量的恆星的外殼會向外膨脹,而核心向內壓縮,產生將氦聚變成碳的核反應。聚變會重新產生能量,暫時緩解恆星的死亡過程。對於太陽大小的恆星。此過程大約持續十億年。

氦燃燒對溫度極其敏感,造成很大的不穩定。巨大的波動會使得外殼獲得足夠的動能脫離恆星,成為行星狀星雲。行星狀星雲中心留下的核心會逐漸冷卻,成為小而緻密的白矮星,通常具有0.6倍太陽質量,但是只有一個地球大小。

在重力和電子互斥力平衡時,白矮星是相對穩定的。在沒有能量來源的情況下,恆星在漫長的歲月中釋放出剩餘的能量,逐漸暗淡下去。最終,釋放完能量的白矮星會成為黑矮星。但是目前宇宙的年齡不足以使得這樣的星體存在。

而高等質量的恆星,在超出5倍太陽質量的恆星的外殼膨脹成為紅超巨星之後,其核心開始被重力壓縮,溫度和密度的上升會觸發一系列聚變反應。這些聚變反應會生成越來越重的元素,產生的能量會暫時延緩恆星的坍縮。

最終,聚變逐步到達元素周期表的下層,硅開始聚合成鐵。在這之前,恆星通過這些核聚變獲得能量,但是鐵不能通過聚變釋放能量。相反,鐵聚變需要吸收能量。這會造成沒有能量來對抗重力,而核心幾乎立刻產生坍縮。

恆星演化的下一步演化機制並不明確,但是這會在幾分之一秒內造成一次劇烈的超新星爆發。和輕於鐵的元素同時被拋出的中微子形成一個衝擊波。在被拋出的物質吸收后,形成一些比鐵重的放射性元素,其中最重的是鈾。沒有超新星爆發的話,相對分子質量比鐵大的元素將不會存在。

中微子衝擊波繼續將被拋出的物質推出。被拋出的物質可能和彗星帶碰撞。可能形成新的恆星、行星和衛星,或者成為各種各樣的天體。

現代科學尚未明確超新星爆發的機制,以及恆星殘骸的成分。但是已知有兩種可能的演化終點:中子星和黑洞。

在同時形成的雙星或者多星系統中,恆星際質量交流可能改變演化過程。因為一部分質量被其他恆星獲得,系統中質量較大的恆星的紅巨星階段演化會被加速,而質量較小的恆星會吸收一部分紅巨星的質量,在主星序停留更長時間。舉例來說,天狼星的伴星就是一顆年老的大約一個太陽質量的白矮星,但是天狼星是一顆大約2.3個太陽質量的主序星。如果白矮星的質量超出錢德拉塞卡極限,電子互斥力會不足以抵抗引力,而會繼續坍縮下去。這會造成恆星向外拋出外殼,也就是超新星爆發,標記著恆星的死亡。也就是說,不會有大於1.4倍太陽質量的白矮星。

如果白矮星和另外一顆恆星組成雙星系統,那麼白矮星可能使用來自另外一顆恆星的氫進行核反應並且將周圍的物質加熱拋出,即使白矮星的質量低於1.4倍太陽質量。這樣的爆炸稱為新星。

在這顆代表著李安的希望的開普勒22b的死亡面前,李安看到了一個中子星。

中子星,又名波霎(註:脈衝星都是中子星,但中子星不一定是脈衝星,我們必須要收到它的脈衝才算是。)是恆星演化到末期,經由重力崩潰發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫於核聚變反應中耗盡,完全轉變成鐵時便無法從核聚變中獲得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能導致外殼的動能轉化為熱能向外爆發產生超新星爆炸,或者根據局恆星質量的不同,整個恆星被壓縮成白矮星、中子星以至黑洞。

白矮星被壓縮成中子星的過程中恆星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上頭一立方厘米的物質便可重達一億噸,且旋轉速度極快,而由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波可能會以一明一滅的方式傳到地球,有如人眨眼,故又譯作波霎。

中子星的密度為10的11次方千克/立方厘米,也就是每立方厘米的質量竟為一億噸之巨。中子星是除黑洞外密度最大的星體,是20世紀60年代最重大的發現之一。

中子星上的地震可高達32級。

典型中子星的外層為固體外殼,厚約一公里,密度高達每立方厘米一千億克以上,由各種原子核組成的點陣結構和簡單的自由電子氣組成。外殼內是一層主要由中子組成的流體,在這層還有少量的質子、電子和m介子。

中子星大致分三層,核心部分因壓力更大,由超子組成;中間層則是自由中子,表面因中子進行β衰變成電子、質子、中微子。因具有原子核的某些包括密度在內的性質。因此,在流行的科學文獻中,中子星有時被稱為巨型原子核。然而在其他方面,中子星和真正的原子核是很不一樣的。例如,原子核是靠強相互作用結合在一起,而中子星是靠引力相互作用結合在一起。根據當今主流理論,把它們看作天體會更正確一些。

中子星的前身一般是一顆質量比太陽大的恆星。它在爆發坍縮過程中產生的巨大壓力,使它的物質結構發生巨大的變化。在這種情況下,不僅原子的外殼被壓破了,而且連原子核也被壓破了。原子核中的質子和中子便被擠出來,質子和電子擠到一起又結合成中子。最後,所有的中子擠在一起,形成了中子星。顯然,中子星的密度,即使是由原子核所組成的白矮星也無法和它相比。中子星,每立方厘米物質足足有10億噸重。當恆星收縮為中子星后,自轉就會加快,能達到每秒幾圈到幾十圈。同時,收縮使中子星成為一塊極強的「磁鐵」,這塊「磁鐵」在它的某一部分向外發射出電波。當它快速自轉時,就像燈塔上的探照燈那樣,有規律地不斷向地球掃射電波。

李安的中微子望遠鏡觀察到了這一點,並且,對方的磁場作用下,周圍的碎片,似乎在不斷的被牽引著。

中子星另一個重要特徵是存在強度極高的磁場,超過10的12次方高斯,它使表層的鐵聚合成長長的鐵原子鏈:每個原子都被壓縮並沿磁場被拉長,而且首尾相接,形成從表面向外伸出的「須狀物」。在表面以下,由於壓力太高,單個原子不能存在。它使中子星沿著磁極方向發射束狀無線電波(射電波)。中子星自轉非常快,能達到每秒幾百轉。中子星的磁極與兩極通常不吻合,所以如果中子星的磁極恰好朝向地球,那麼隨著自轉,中子星發出的射電波束就會象一座旋轉的燈塔那樣一次次掃過地球,形成射電脈衝。人們又稱這樣的天體為「脈衝星」。

看到中子星的形成,李安就知道情況已經無可逆轉,就算是上帝,也不可能拯救開普勒22b這個恆星系了,而根據李安的觀察,開普勒22b的環境,因為恆星的爆炸,也發生了集聚的變化,現在已經無法被稱作是宜居星球了。

李安的心情,頓時就不好了。

好在這不好的心情也沒有持續很久,因為,過了不久,李安就到達了天王星。(未完待續。。)

上一章書籍頁下一章

全能學霸

···
加入書架
上一章
首頁 都市青春 全能學霸
上一章下一章

第391章到達

%